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Abstract
As mobile cellular devices and traffic continue their rapid
growth, providers are taking larger steps to optimize
traffic, with the hopes of improving user experiences
while reducing congestion and bandwidth costs. This
paper presents the design, deployment, and experiences
with Baidu TrafficGuard, a cloud-based mobile proxy
that reduces cellular traffic using a network-layer VPN.
The VPN connects a client-side proxy to a centralized
traffic processing cloud. TrafficGuard works transpar-
ently across heterogeneous applications, and effectively
reduces cellular traffic by 36% and overage instances
by 10.7 times for roughly 10 million Android users in
China. We discuss a large-scale cellular traffic analysis
effort, how the resulting insights guided the design of
TrafficGuard, and our experiences with a variety of traf-
fic optimization techniques over one year of deployment.

1 Introduction
Mobile cellular devices are changing today’s Internet
landscape. Growth in cellular devices today greatly out-
paces that of traditional PCs, and global cellular traffic is
growing by double digits annually, to an estimated 15.9
Exabytes in 2018 [4]. This growing traffic demand has
led to significant congestion on today’s cellular network-
s, resulting in bandwidth caps and throttling at major
wireless providers. The challenges are more dramatic
in developing countries, where low-capacity cellular net-
works often fail to deliver basic quality of service needed
for simple applications [40, 41, 44].

While this is a well known problem, only recently have
we seen efforts to address it at scale. Google took the
unprecedented step of prioritizing mobile-friendly sites
in its search algorithm [9]. This will likely spur further
efforts to update popular websites for mobile devices.
Recent reports estimate that most enterprise webpages
are designed for PCs, and only 38% of webpages are
mobile-friendly [24]. More recently, Google released

Request

Middleboxes

Internet Parent
Proxy

TrafficGuard

Cellular Data Network

Response

User 
App

Collaborative
Mobile App
(Child Proxy)

…

Original 
Response

User Device

?✔ ✘

Figure 1: Architectural overview of TrafficGuard.

details on their Flywheel proxy service for compressing
content for the Chrome mobile browser [29].

Competition in today’s mobile platforms has led to nu-
merous “walled-gardens,” where developers build their
own suites of applications that keep users within their
ecosystem. The ongoing trend limits the benefits of
application-specific proxies, even ones with user bases
as large as Google Chrome [29, 18, 25, 21, 42, 43, 36].
In contrast, an alternative approach is to transparently
intercept and optimize network traffic across all apps at
the OS/network layer. Although some examples of this
approach exist [16, 17, 6, 15], little is known about their
design or impact on network performance.

This paper describes the design, deployment, and ex-
periences with Baidu TrafficGuard, a third-party cellular
traffic proxy widely deployed for Android devices in
China 1. As demonstrated in Figure 1, TrafficGuard is a
cloud-based proxy that redirects traffic through a VPN to
a client-side mobile app (http://shoujiweishi.baidu.com).
It currently supports all Android 4.0+ devices, and does
not require root privileges. Inside the cloud, a series of
software middleboxes are utilized to monitor, filter, and
reshape cellular traffic. TrafficGuard was first deployed
in early 2014, and its Android app has been installed by

1Cellular data usage in Asia differs from that of US/European net-
works, in that HTTP traffic dominates 80.4% of cellular traffic in China
and 74.6% in South Korea [62]. In comparison, HTTPS accounts for
more than 50% of cellular traffic in the US [56, 47, 54].
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roughly 10 million users. The average number of daily
active users is around 0.2 million.

In designing a transparent mobile proxy for cellular
traffic optimization, TrafficGuard targets four key goals:
• First, traffic optimization should not harm user experi-

ences. For example, image compression through pixel
scaling often distorts webpage and UI (user interface)
rendering in user apps. Similarly, traffic processing
should not introduce unacceptable delays.

• Second, our techniques must generalize to different
apps, and thus proprietary APIs or data formats should
be avoided. For example, Flywheel achieves signifi-
cant traffic savings by transcoding images to the WebP
format [27]. Though WebP offers high compression,
not all apps support this format.

• Third, we wish to limit client-side resource consump-
tion, in terms of memory, CPU, and battery. Note
that the client needs to collaborate well with the cloud
using a certain amount of resources.

• Finally, we wish to reduce system complexity, re-
source consumption, and monetary costs on the cloud
side. In particular, the state information maintained
for each client should be carefully determined.
In this paper, we document considerations in the de-

sign, implementation, and deployment of TrafficGuard.
First, we analyze aggregate cellular traffic measurements
over 110K users to understand the characteristics of
cellular traffic in China. This gave us insights on the
efficacy and impact of traditional data compression, as
well as the role of useless content like broken images in
cellular traffic. Second, we adopt a lightweight, adaptive
approach to image compression, where more consider-
ate compression schemes are constructed to achieve a
sweet spot on the image-quality versus file-size trade-
off. This helps us achieve traffic savings comparable
to Flywheel (27%) at roughly 10%–12% of the compu-
tation overhead. Third, we develop a customized VPN
tunnel to efficiently filter users’ unwanted traffic, includ-
ing overnight, background, malicious, and advertisement
traffic. Finally, we implement a cloud-client paired prox-
y system, and integrate best-of-breed caching techniques
for duplicate content detection. The cloud-client paired
design allows us to finely tune the tradeoff between traf-
fic optimization and state maintenance.

TrafficGuard is the culmination of these efforts. For
installed users, it reduces overall cellular traffic by an
average of 36%, and instances of traffic overage (i.e.,
going beyond the users’ allotted data caps) by 10.7 times.
Roughly 55% of users saw more than a quarter reduction
in traffic, and 20% of users saw their traffic reduced by
half. TrafficGuard introduces relatively small latency
penalties (median of 53 ms, mean of 282 ms), and has
little to no impact on the battery life of user devices.
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Figure 2: Potential integration of TrafficGuard into a 3G
cellular carrier. Integration for 4G would be similar.

While already successful in its current deployment,
TrafficGuard can achieve even higher efficiency if cellu-
lar carriers (are willing to) integrate it into their infras-
tructure. As demonstrated in Figure 2, carriers could
deploy TrafficGuard between the GGSN (Gateway G-
PRS Support Node) and SGSN (Serving GPRS Support
Node). Then the optimized traffic is further transferred
to the RNC (Radio Network Controller) and BTS (Base
Transceiver Station). This would greatly simplify both
the cloud-side and client-side components of Traffic-
Guard, and further reduce latency penalties for users.

Finally, we note that while Baidu does not have an
internal IRB (institutional review board [13]) review pro-
cess, all reasonable steps were taken at Baidu to protect
user privacy during this study. All users who participated
in the study opted-in as volunteers with informed con-
sent, and full traffic traces were limited to one week of
measurements (all other datasets are anonymized logs).
Wherever possible, analysis was limited to anonymized
metadata only. When necessary, content analysis was
done on aggregate data, and fully decoupled from any
user identifiers or personally identifiable information.

2 State-of-the-Art Systems
This section briefly surveys state-of-the-art mobile traffic
proxy systems. As listed in Table 1, we compare seven
systems with TrafficGuard. We focus on five of the most
important and ubiquitous features supported by these
systems: 1) image compression, 2) text compression, 3)
content optimization, 4) traffic filtering, and 5) caching.
In each case, we highlight the strengths of different ap-
proaches, as well as the shortcomings, which motivated
our design of TrafficGuard.

Since most mobile traffic proxy systems are closed-
source, we rely on a variety of methods to determine their
features. The implementation of Google Flywheel is
described in [29]. For Opera Turbo, UCBrowser (proxy),
and QQBrowser (proxy), we are able to uncover most of
their features through carefully controlled experiments.
Specifically, we set up our own web server, used these
proxies to browse our own content hosted by the server,
and carefully compared the data sent by the server with
what was received by our client device. Unfortunately,
Opera Max, Microsoft Data Sense, and Onavo Extend

2
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Table 1: Comparison of state-of-the-art mobile traffic proxy systems. “?” means unknown.
System Image Compression Text Compression Content Optimization Traffic Filtering Caching

Google Flywheel Transcoding to WebP Yes Lightweight error page Safe Browsing Server-side
Opera Turbo Transcoding to WebP Yes Pre-executing JavaScript Ad blocking ?
UCBrowser Pixel Scaling Yes No Ad blocking ?
QQBrowser Transcoding to WebP Yes No Ad blocking ?

Opera Max [17] Transcoding PNG Yes No Restricting overnight ?(China’s version) to JPEG traffic
Microsoft

Data Sense ? Yes No Restricting background ?traffic, and ad blocking

Onavo Extend Transcoding PNG and Yes No No Client-sidelarge GIF to JPEG

Adaptive quality
reduction

Attempting to discard
useless content

Restricting overnight and Server-side,
TrafficGuard No background traffic, ad and VBWC

blocking, Safe Browsing on both sides

use encrypted proxies, and thus we can only discover a
subset of their implementation details.

First, we examine the image compression techniques.
Three systems transcode images to WebP, which effec-
tively reduces network traffic [29]. However, this only
works for user apps that support WebP (e.g., Google
Chrome). Similarly, Opera Max and Onavo Extend
transcode PNGs to JPEGs, and Onavo Extend also
transcodes large GIFs to JPEGs. Taking a different ap-
proach, UCBrowser rescales large images (> 700× 700
pixels) to small images (< 150× 150 pixels). Although
rescaling reduces traffic, it could harm user experiences
by significantly degrading image qualities. In contrast
to these systems, TrafficGuard uses an adaptive quality
reduction approach that is not CPU intensive, reduces
traffic across apps, and generally does not harm user
experiences (see § 5.1).

Second, we find that all the seven systems compress
textual content, typically with gzip. However, our large-
scale measurement findings (in § 3.2.2) reveal that the
vast majority of textual content downloaded by smart-
phone users is very short, meaning that compression
would be ineffective. Thus, TrafficGuard does not com-
press texts, since the CPU overhead of decompression is
not worth the low (1.36%) HTTP traffic savings.

Third, we explore the content optimization strategies
employed by mobile traffic proxies. We define content
optimization as attempts to reduce network traffic by
altering the semantics or functionality of content. For
example, Flywheel replaces HTTP 404 error pages with
a lightweight version. More aggressively, Opera Turbo
executes JavaScript objects at the proxy, so that clients
do not need to download and execute them. Although
this can reduce traffic, it often breaks the original func-
tionality of websites and user apps, e.g., in the controlled
experiments we often noticed that JavaScript functions
like onscroll() and oninput() were not properly executed
by Opera Turbo. Rather than adopt these approaches,
TrafficGuard validates HTTP content and attempts to
discard useless content like broken images (see § 5.2).

Fourth, we observe that many of the target systems
implement traffic filtering. Four systems block advertise-
ments, plus Flywheel using Google Safe Browsing [8] to
block malicious content. Opera Max attempts to restrict
apps’ traffic usage during the night, when users are likely
to be asleep. Microsoft Data Sense takes things a step
further by also restricting traffic from background apps,
under the assumption that apps which are not currently
interactive should not be downloading lots of data. We
discover that all these filtering techniques are beneficial
to users (see § 3.2.4), and thus we incorporate all of them
into TrafficGuard (see § 5.3).

Finally, we study the caching strategies of existing sys-
tems. Flywheel maintains a server-side cache of recently
accessed objects, while Onavo Extend maintains a local
cache (of 100 MB by default). In contrast, TrafficGuard
adopts server-side strategies by maintaining a cache at
the proxy (see § 4.2), as well as implementing Value-
based Web Caching (VBWC) between the client and
server (see § 5.4). Although we evaluated other sophisti-
cated caching strategies (see Appendix A), we ultimately
chose VBWC because it offers excellent performance
and is straightforward to implement.

3 Measuring Cellular Traffic
In this section, we present a large-scale measurement
study of cellular traffic usage by Android smartphone
users. Unlike prior studies [37, 46, 52, 39, 34, 62], our
analysis focuses on content and metadata. Using this
dataset, we identify several key performance issues and
tradeoffs that guide the design of TrafficGuard.

3.1 Dataset Collection
The ultimate goal of TrafficGuard is to improve smart-
phone users’ experiences by decreasing network usage
and filtering unwanted content. To achieve this goal, we
decided to take a measurement-driven methodology, i.e.,
we first observed the actual cellular traffic usage patterns
of smartphone users, and then used the data to drive our
design and implementation decisions.

3
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Table 2: General statistics of our collected TGdataset.
Collection period 03/21 – 03/27, 2014

Unique users 111,910
Total requests 162M
Dataset size 1324 GB (100%)

Non-HTTP traffic (plus TCP/IP) 259 GB (19.6%)
HTTP traffic (plus TCP/IP) 1065 GB (80.4%)

HTTP header traffic 107 GB (8.1%)
HTTP body traffic 875 GB (66.1%)

When we first deployed TrafficGuard between Jan. 5–
Mar. 31, 2014, the system only monitored users’ cellular
traffic; it did not filter or reshape traffic at all. We
randomly invited users to test TrafficGuard from ∼100M
existing mobile users of Baidu. We obtained informed
consent from volunteers by prominently informing them
that full traces of their cellular traffic would be collected
and analyzed. We assigned a unique ClientToken to each
user device that installed the mobile app of TrafficGuard.

We used two methods to collect packet traces from
volunteers. For an HTTP request, the TrafficGuard ap-
p would insert the ClientToken into the HTTP header.
The TrafficGuard cloud would then record the request,
remove the injected header, complete the HTTP request,
and store the server’s response. However, for non-HTTP
requests (most of which are HTTPS), it was not possible
for the TrafficGuard cloud to read the injected Client-
Token (we did not attack secure connections via man-in-
the-middle). Thus, the TrafficGuard app locally recorded
the non-HTTP traffic, and uploaded it to the cloud in a
batch along with the ClientToken once per week. These
uploads were restricted to WiFi 2, in order to avoid
wasting volunteers’ cellular data traffic. In both cases,
we also recorded additional metadata like the specific
app that initiated each request, and whether that app was
working in the foreground or background.

We collected packet traces from volunteers for one
week, between Mar. 21–27, 2014. In total, this dataset
contains 320M requests from 0.65M unique ClientTo-
kens. However, we observe that many user devices in
the dataset only used their cellular connections for short
periods of time. These short-term users might have
good WiFi availability, or might be using their cellular
connections but did not (remember to) run the mobile
app of TrafficGuard. To avoid bias, we focus on the
traces belonging to 111,910 long-term users who used
their cellular connections in at least four days during
the collection period. This final dataset is referred to as
TGdataset, whose general statistics are listed in Table 2.

2Certainly TrafficGuard also has the capability of helping mobile
users save WiFi traffic, just like what Google Flywheel does. However,
at the moment TrafficGuard only targets at saving cellular traffic for
two reasons. First, WiFi users generally do not care about the traffic
usage since they do not pay for their Internet access in terms of traffic
usage. Second, proxy-based traffic saving inevitably leads to latency
penalty and thus would impact WiFi users’ experiences.

Table 3: Statistics of HTTP content in TGdataset.
Type % of % of Size (KB)

Requests HTTP Traffic Median Mean
Image 32% 71% 5.7 15.5
Text 49% 15.7% 0.2 2.2

Octet-stream 10% 5.5% 0.4 3.8
Zip 8.1% 5.1% 0.5 4.3

Audio & Video 0.03% 2.6% 407 614
Other 0.87% 0.1% 0.3 0.7

3.2 Content Analysis
Below, we analyze the content and metadata contained in
TGdataset. In particular, we observe that today’s cellular
traffic can be effectively optimized in multiple ways.

3.2.1 General Characteristics
We begin by presenting some general characteristics of
TGdataset. As listed in Table 2, 80.4% of TGdataset is
HTTP traffic, most of which corresponds to the bodies of
HTTP messages. This finding is positive for two reasons.
First, it means content metadata (e.g., Content-Length
and Content-Type) is readily available for us to analyze.
Second, it is clear that the TrafficGuard system will be
able to analyze and modify the vast majority of cellular
traffic, since it is in plaintext.

Table 3 presents information about the types of HTTP
content in TGdataset. We observe that images are the
second most frequent type of content, but consume 71%
of the entire HTTP traffic. Textual content is the most
frequent, while non-image binary content accounts for
the remainder of HTTP traffic. We manually analyzed
many of the octet-streams in our dataset and found that
they mainly consist of software and video streams.

3.2.2 Size and Quality of Content
Next, we examine the size and quality of content in
TGdataset, and relate these characteristics to the com-
pressibility of content.

Images. Four image types dominate in our dataset:
JPEG, WebP, PNG, and GIF. Certainly, all four types of
images are already compressed. However, we observe
that 40% of images are large, which we define as images
of w×h pixels such that w×h≥ 250000∧w≥ 150∧h≥
150 (refer to § 5.1 for more details of image categoriza-
tion). Some images even have over 4000×4000 pixels
(exceeding 10 MB in size) in extreme cases.

More importantly, we observe that many JPEGs have
high quality factors (QFs). QF determines the strength
of JPEG’s lossy-compression algorithm, with QF = 100
causing minimal loss but a larger file size. The median
QF of JPEGs in TGdataset is 80 while the average is 74.
Such high-quality images are unnecessary for most cellu-
lar users, considering their limited data plans and screen
sizes. This presents us with an optimization opportunity
that TrafficGuard takes advantage of (see § 5.1).

4
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Table 4: Validity and usefulness of images.

Type % of % of Image Size (KB):
Requests Image Traffic Median Mean

Correct 87% 95.9% 5.4 14.8
Broken 10.6% 3.2% 0.13 3.2
Blank 2.3% 0.57% 0 0

Incomplete 0.1% 0.21% 0.01 5.0
Inconsistent 0.04% 0.16% 4.8 33

Textual content. The six most common types of
textual content in TGdataset are: JSON, HTML, PLAIN,
JavaScript, XML, and CSS. Compared with images, tex-
tual content is much smaller: the median size is merely
0.2 KB. Compressing the short texts with the size less
than 0.2 KB (e.g., with gzip, bzip2, or 7-zip) cannot
decrease their size; in fact, the additional compression
metadata may even increase the size of such textual data.

Surprisingly, we find that compressing the other, larg-
er half (> 0.2 KB) of textual content with gzip brings
limited benefits — it only reduced the HTTP traffic of
texts by 8.7%, equal to 1.36% (= 8.7%×15.7%) of total
HTTP traffic. Similarly, using bzip2 and 7-zip could not
significantly increase the compression rate. However,
decompressing texts on user devices does necessitate
additional computation and thus causes battery overhead.
Given the limited network efficiency gains and the toll on
battery life, we opt to not compress texts in TrafficGuard,
unlike all other systems as listed in Table 1.
Other content. For the remaining octet-stream, zip, au-
dio & video content, we find that compression provides
negligible benefits, since almost all of them are already
compressed (e.g., MP3 and VP9). Although it is possible
to reduce network traffic by transcoding, scaling, or re-
ducing the quality of multimedia content [42], we do not
explore these potential optimizations in this work.

3.2.3 Content Validation
Delving deeper into the content downloaded by our vol-
unteers, we discover a surprisingly high portion of use-
less content, particularly broken images. We define an
image to be broken if it cannot be decoded by any of
the three widely used image decoders: imghdr [12],
Bitmap [23], and dwebp [7]. As shown in Table 4, 10.6%
of images in TGdataset are broken, wasting 3.2% of all
image traffic in our dataset (their average size is much
smaller than that of correct images). Note that we also
observe a small fraction of blank and incomplete images
that we can decode, as well as a few inconsistent images
that are actually not images, but we do not consider to
obey our strict definition of correctness.

3.2.4 Traffic Filtering
As we note in § 2, existing mobile traffic proxies have
adopted multiple strategies for traffic filtering. In this
section, we investigate the potential of four particular
filtering strategies by analyzing TGdataset.

Overnight traffic. Prior studies have observed that
many smartphones generate data traffic late at night, even
when users are not using the devices [52, 39, 34]. If
we conservatively assume that our volunteers are asleep
between 0–6 AM, then 11.4% of traffic in our dataset can
potentially be filtered without noticeable impact on users.
Based on this finding, we implemented a feature in Traf-
ficGuard that allows users to specify a night time period
during which cellular traffic is restricted (see § 5.3).

Background traffic. Users expect foreground apps to
consume data since they are interactive, but background
apps may also consume network resources. Although
this is expected in some cases (e.g., a user may stream
music while also browsing the web), undesirable data
consumption by background apps has become such a
common complaint that numerous articles exist to help
mitigate this problem [58, 3, 2, 10]. In TGdataset, we
observe that 26.7% of cellular traffic is caused by back-
ground apps. To this end, we implemented dual filters in
TrafficGuard specifically designed to reduce the network
traffic of background apps (see § 5.3).

Malicious traffic. A recent measurement study of
Google Play reveals that more than 25% of Android
apps are malicious, including spammy, re-branded, and
cloned apps [59]. We compare all the HTTP requests in
TGdataset against a proprietary blacklist containing 29M
links maintained by major Internet companies (including
Baidu, Google, Microsoft, Symantec, Tencent, etc.), and
find that 0.85% of requests were issued for malicious
content. We addressed this issue in TrafficGuard by
filtering out HTTP requests for blacklisted URLs.

Advertisement traffic. In addition to malicious con-
tent, we also find that 4.15% of HTTP requests in TG-
dataset were for ads. We determined this by comparing
all the requested HTTP URLs in our dataset against a
proprietary list of 102M known advertising URLs (sim-
ilar to the well-known EasyList [1]). Ad blocking is a
morally complicated practice, and thus we give Traffic-
Guard users the choice of whether to opt-in to ad filter-
ing. Users’ configuration data reveal that the majority
(67%) of users have chosen to block ads. On the other
hand, we did get pushback from a small number of ad-
vertisers; when this happened, usually we would remove
the advertisers from our ad block list after verification.

3.2.5 Caching Strategies
Finally, we explore the feasibility of two common
caching strategies. Unfortunately, we find neither tech-
nique offers satisfactory performance, which motives us
to implement a more sophisticated caching strategy.

Name-based. Traditional web proxies like Squid [61]
implement name-based caching of objects (i.e., objects
are indexed by their URLs). However, this approach

5
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is known to miss many opportunities for caching [38,
57, 51]. To make matters worse, we observe that over
half of the content in TGdataset is not cacheable by
Squid due to HTTP protocol issues. This situation is
further exacerbated by the fact that many start-of-the-art
HTTP libraries do not support caching at all [50]. Thus,
although TrafficGuard uses Squid in the back-end cloud,
we decided to augment it with an additional, object-level
caching strategy (known as VBWC, see § 5.4).
HTTP ETag. The HTTP ETag [11] was introduced in
HTTP/1.1 to mitigate the shortcomings of named-based
caching. Unfortunately, the effectiveness of ETag is still
limited by two constraints. First, as ETags are assigned
arbitrarily by web servers, they do not allow clients to
detect identical content served by multiple providers.
This phenomenon is called content aliasing [55]. We ob-
serve that 14.16% of HTTP requests in TGdataset are for
aliased content, corresponding to 7.28% of HTTP traffic.
Second, we find that ETags are sparsely supported: only
5.76% of HTTP responses include ETags.

4 System Overview
Our measurement findings in § 3.2 provide useful guide-
lines for optimizing cellular traffic across apps. Addi-
tionally, we observe that some techniques used by prior
systems (e.g., text compression) are not useful in prac-
tice. These findings guide the design of TrafficGuard for
optimizing users’ cellular traffic.

This section presents an overview of TrafficGuard,
which consists of a front-end mobile app on users’ de-
vices and a set of back-end services. Below, we present
the basic components of each end, with an emphasis on
how these components support various traffic optimiza-
tion mechanisms. Additional details about specific traffic
optimization mechanisms are explained in § 5.

4.1 Mobile App: The Client-side Support
The TrafficGuard mobile app is comprised of a user inter-
face and a child proxy. The user interface is responsible
for displaying cellular usage statistics, and allows users
to configure TrafficGuard settings. The settings include
enabling/disabling specific traffic optimization mecha-
nisms, as well as options for specific mechanisms (the
details are discussed in § 5). We also leverage the user
interface to collect feedback from users, which help us
continually improve the design of TrafficGuard.

The child proxy does the real work of traffic optimiza-
tion on the client side. It intercepts incoming and out-
going HTTP requests at the cellular interface, performs
computations on them, and forwards (some) requests to
the back-end cloud via a customized VPN tunnel. As
shown in Figure 3, the client-side VPN tunnel is imple-
mented using the TUN virtual network-level device [26]
that intercepts traffic from or injects traffic to the TCP/IP
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Figure 3: Basic design of the child proxy.

stack. HTTP GET requests 3 are captured by the child
proxy, encapsulated, and then sent to the back-end cloud
for further processing. Accordingly, the child proxy is
responsible for receiving responses from the back-end.

The mobile app provides client-side support for traffic
optimization. First, it allows users to monitor and restrict
cellular traffic at night and from background apps in a
real-time manner. Users are given options to control how
aggressively TrafficGuard filters these types of traffic.
Second, it provides local filtering of malicious links and
unwanted ads using two small blacklists of the most
frequently visited malicious and advertising URLs. Re-
quests for malicious URLs are dropped; users are given
a choice of whether to enable ad blocking, in which case
requests for ad-related URLs are also dropped.

Third, the child proxy acts as the client-side of a value-
based web cache [55] (VBWC, see § 5.4 for details).
At a high level, the child proxy maintains a key-value
store that maps MD5 hashes to pieces of content. The
back-end cloud may return “VBWC Hit” responses to
the client that contain the MD5 hash of some content,
rather than the content itself. In this case, the child proxy
retrieves the content from the key-value store using the
MD5 hash, and then locally constructs an HTTP re-
sponse containing the cached content. The reconstructed
HTTP response is then returned to the corresponding
user app. This process is fully transparent to user apps.

4.2 Web Proxy: The Back-end Support
As shown in Figure 4, the cloud side of TrafficGuard
consists of two components: a cluster of parent proxy
servers that decapsulate users’ HTTP GET requests and
fetch content from the Internet; and a series of software
middleboxes that process HTTP responses.

3 Non-GET HTTP requests (e.g., POST, HEAD, and PUT) and non-
HTTP requests do not benefit from TrafficGuard’s filtering and caching
mechanisms, so the child proxy forwards them to the TCP/IP stack for
regular processing. Furthermore, TrafficGuard makes no attempt to
analyze SSL/TLS traffic for privacy reasons.

6
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Figure 4: Cloud-side overview of TrafficGuard. HTTP requests are generally processed from left to right by a cluster
of parent proxy servers and a series of software middleboxes implemented on top of Nginx.

Once an HTTP GET request sent by the child proxy is
received, the parent proxy decapsulates it and extracts
the original HTTP GET request. Next, middleboxes
compare the original HTTP GET request against large
blacklists of known malicious and ads-related URLs.
Note that this HTTP GET request has passed the client-
side filtering with small blacklists. Together, this two-
level filtering scheme prevents TrafficGuard users from
wasting memory loading large blacklists on their own
devices. If a URL hits either blacklist, it is reported back
to the mobile app so the user can be notified.

An HTTP request that passes the blacklist filters is
forwarded to a Squid proxy, which fetches the requested
content from the original source. The Squid proxy im-
plements name-based caching of objects using an LRU
(Least Recently Used) scheme, which helps reduce la-
tency for popular objects. Once the content has been re-
trieved by Squid, it is further processed by middleboxes
that validate content (§ 5.2) and compress images (§ 5.1).

Lastly, before the content is returned to users, it is
indexed by VBWC (§ 5.4). VBWC maintains a separate
index of content for every active user, which contains the
MD5 hash of each piece of content recently downloaded
by that user. For a given user, if VBWC discovers that
some content is already indexed, it returns that MD5 in a
“VBWC Hit” response to the mobile app, instead of the
actual content. As described above, the child proxy then
constructs a valid HTTP response message containing
the cached content. Otherwise, the MD5 is inserted into
the table and the actual content is sent to the user.

5 Mechanisms
This section presents the details of specific traffic opti-
mization mechanisms in TrafficGuard. Since many of
the mechanisms include user-configurable parameters,
we gathered users’ configuration data between Jul. 4–
Dec. 27, 2014. This dataset is referred to as TGconfig.

5.1 Image Compression
Overview. Image compression is the most importan-
t traffic-reduction mechanism implemented by Traffic-
Guard, since our TGdataset shows that cellular traffic

is dominated by images. Based on our observation that
the majority of JPEGs have quality factors (QFs) that
are excessively high for display on smartphone screens,
TrafficGuard adaptively compresses JPEGs by reducing
their QFs to an acceptable level. Additionally, Traf-
ficGuard transcodes PNGs and GIFs to JPEGs with an
acceptable QF. Note that TrafficGuard does not transcode
PNGs with transparency data or animated GIFs, to avoid
image distortion. TrafficGuard ignores WebP images,
since they are already highly compressed.

TrafficGuard’s approach to image compression has
three advantages over alternative strategies. First, as
JPEG is the dominant image format supported by almost
all (>99% to our knowledge) user apps, TrafficGuard
does not need to transcode images back to their original
formats on the client side. Second, our approach costs
only 10%–12% as much CPU as Flywheel’s WebP-based
transcoding method (see § 6.3). Finally, our approach
does not alter the pixel dimensions of images. This
is important because many UI layout algorithms (e.g.,
CSS) are sensitive to the pixel dimensions of images, so
rescaling images may break webpage and app UIs.

Categorizing Images. The challenge of implementing
our adaptive QF reduction strategy is deciding how much
to reduce the QFs of images. Intuitively, the QFs of large
images can be reduced more than small images, since the
resulting visual artifacts will be less apparent in larger
images. Thus, following the approach of Ziproxy [28]
(an open-source HTTP proxy widely used to compress
images), we classify images into four categories accord-
ing to their width (w) and height (h) in pixels:

• Tiny images contain < 5000 pixels, i.e., w×h < 5000.

• Small images include images with less than 50000
pixels (i.e., 5000 ≤ w×h < 50000), as well as “slim”
images with less than 150 width or height pixels (i.e.,
w×h ≥ 5000∧ (w < 150∨h < 150)).

• Mid-size images contain less than 250000 pixels, that
is 50000 ≤ w×h < 250000∧w ≥ 150∧h ≥ 150.

• Large images contain no less than 250000 pixels, that
is w×h ≥ 250000∧w ≥ 150∧h ≥ 150.
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QF Reduction Scheme. After images are divided
into the above four categories, we need to determine a
proper QF (reduction) scheme for transcoding images in
each category. Our goal is to maximize compression by
reducing QF, while also minimizing the reductions of
user-perceived image quality. To measure quality, we
use Structural Similarity (SSIM) [60], which assesses the
visual similarity between a compressed image and the
original (1 means the two images are identical). Quan-
titatively, we calculate the SSIM and compression ratio
(= Size of images after compression

Size of images before compression ) corresponding to consec-
utive QFs, based on all the correct images in TGdataset.
The results are plotted in Figure 5 and Figure 6.

Specifically, we define a QF scheme ImgQFScheme
= {T , S, M, L} to mean that tiny, small, mid-size, and
large images are compressed to QF = T , S, M, and
L, respectively. In practice, we constructed three QF
schemes that vary from high compression, less quality
to low compression, high quality: ImgQFLow = {30,
25, 25, 20}, ImgQFMiddle = {60, 55, 50, 45}, and
ImgQFHigh = {90, 90, 85, 80}. We then compressed
all the correct images in TGdataset using each scheme to
evaluate their impact on image quality and size.

Figure 7 examines the impact of each QF scheme
on image quality. Prior work has shown that image
compression with SSIM ≥ 0.85 is generally considered
acceptable by users [29]. As shown in Figure 7, all
three QF schemes manage to stay above the 0.85 quality
threshold for small, mid-size, and large images. The
two cases where image quality becomes questionable
concern tiny images, which are the hardest case for any
compression strategy. Overall, these results suggest that
in most cases, even the aggressive ImgQFLow scheme
will produce images with an acceptable level of fidelity.

Figure 8 examines the image size reduction enabled
by each QF scheme, as compared to the original images.
As expected, more aggressive QF schemes provide more
size reduction, especially for large images.

User Behavior. The mobile app of TrafficGuard allows
users to choose their desired QF scheme. Users must
select a scheme after they install TrafficGuard. The
data in TGconfig reveal that 95.4% of users selected the
ImgQFMiddle scheme. Also, qualitative feedback from

TrafficGuard users suggests that they are satisfied with
the quality of images while using the system.

5.2 Content Validation
As mentioned in § 3.2.3, TrafficGuard users encounter a
non-trivial amount of broken images when using apps.
The back-end cloud of TrafficGuard naturally notices
most broken images during the image analysis, transcod-
ing, and compression process. In these cases, the cloud
simply discards the broken image and sends a “Broken
Warning” response to the client. From the requesting
app’s perspective, broken images appear to be missing
due to a network error, and are handled as such.

5.3 Traffic Filtering
In this section, we present the implementation details
of the four types of filters employed by TrafficGuard.
Most traffic filtering in our system occurs on the client
side (in the child proxy), including first-level filtering
of malicious URLs and ads, and throttling of overnight
and background traffic. Only second-level filtering of
malicious URLs and ads occurs on the cloud side.

Restricting overnight traffic. The mobile app of
TrafficGuard automatically turns the user’s cellular data
connection off between the hours of t1 and t2, which are
configurable by the user. This feature is designed to halt
device traffic during the night, when the user is likely to
be asleep. TrafficGuard pops-up a notification just before
t1, alerting the user that her cellular connection will be
turned off in ten seconds. Unless the user explicitly
cancels the action, her cellular data connection will not
be resumed until t2. According to TGconfig, nearly 20%
of users have enabled the overnight traffic filter, and 84%
of them adopt the default night duration of 0–6 AM.

Throttling background traffic. To prevent malicious
or buggy apps from draining users’ limited data plan-
s, TrafficGuard throttles traffic from background app-
s. Specifically, the TrafficGuard app has a configurable
warning bound (B1) and a disconnection bound (B2),
with B2 � B1. TrafficGuard also maintains a count c
of the total bytes transferred by background apps. If c
increases to B1, TrafficGuard notifies the user that back-
ground apps are consuming a significant volume of traf-
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fic. If c reaches B2, another notification is created to alert
the user that her cellular data connection will be closed
in ten seconds. Unless the user explicitly cancels this
action or manually re-opens the cellular data connection,
her cellular data connection will not be resumed. After
the user responds to the B2 notification, c is reset to zero.

According to TGconfig, 97.6% of users have enabled
the background traffic filter, indicating that users actually
care about background traffic usage. Initially, we set
the default warning bound B1 = 1.0 MB. However, we
observed over 57% of users decreased B1 to 0.5 MB, in-
dicating that they wanted to be reminded of background
traffic usage more frequently. Conversely, the initial
disconnection bound was B2 = 5 MB, but 69% of users
raised B2 to 20 MB, implying that the initial default set-
ting was too aggressive. Based on this implicit feedback,
we changed the default values of B1 and B2 to 0.5 MB
and 20 MB. In comparison, Microsoft Data Sense only
maintains a disconnection bound (B2) to restrict back-
ground traffic, and there is no default value provided.

Two-level filtering of malicious links and ads. To
avoid wasting cellular traffic on unwanted content, Traf-
ficGuard always prevents users from accessing malicious
links, while giving users the choice of whether to opt-in
to ad blocking. In § 4.1 and § 4.2, we have presented
high-level design of the two-level filtering. Here we talk
about two more nuanced implementation issues.

The first issue is about the sizes of the local, small
blacklists. Both lists have to be loaded in memory by the
child proxy for quick searching, so they must be much
shorter than the cloud-side large blacklists (which con-
tain 29M malicious URLs and 102M ads-related URLs).
To balance memory overhead with effective local traffic
filtering, we limit the maximum size of the local black-
lists to 40 MB. Consequently, the local blacklists usually
contain around 1M links in total, which we observe are
able to identify 72%–78% of malicious and ads links.

The second issue concerns updates to blacklists. As
mentioned in § 3.2.4, the large blacklists are maintained
by an industrial union that typically updates them once
per month. Accordingly, the TrafficGuard cloud auto-
matically creates updated small blacklists and pushes
them to mobile users.

5.4 Value-based Web Caching (VBWC)
Early in 2003, Rhea et al. proposed VBWC to overcome
the shortcomings of traditional HTTP caching [55]. The
key idea of VBWC is to index objects by their hash
values rather than their URLs, since an object may have
many aliases. VBWC has a much better hit rate than
HTTP caching because it handles aliased content. How-
ever, prior to TrafficGuard, VBWC has not been widely
deployed in practice due to two problems: 1) the com-
plexity of segmenting an object into KB-sized blocks and

choosing proper block boundaries; 2) its incompatibility
with the HTTP protocol, since VBWC requires that the
proxy and the client maintain significant state informa-
tion, i.e., a mapping from hash values to cached content.

Reducing complexity. To determine whether Traffic-
Guard’s VBWC implementation should segment content
into blocks (and if so, at what granularity), we conduct
trace-driven simulations using the content in TGdataset.
Specifically, we played back each user’s log of request-
s, and inserted the content into VBWC using 8 KB,
32 KB, 128 KB, and full content segmentation strategies.
To determine segment boundaries, we ran experiments
with simple fixed-size segments [55] and variable-sized,
Rabin-fingerprinting based segments [53]. We also ex-
amined the handprinting-based approach that combines
Rabin-fingerprinting and deterministic sampling [48].

Through these simulations, we discovered that 13% of
HTTP requests would hit the VBWC cache if we stored
content whole, i.e., with no segmentation. Surprisingly,
even if we segmented content into 8 KB blocks using the
Rabin-fingerprinting (the most aggressive caching strat-
egy we evaluated), the hit rate only increased to 15%.
The handprinting-based approach exhibited similar per-
formance to Rabin-fingerprinting when a typical number
(k = 4) of handprint samples are selected, while incurring
a bit lower computation overhead. By carefully analyz-
ing the cache-hit results, we find that the whole-content
hashing is good enough for two reasons: 1) images dom-
inate the size of cache-hit objects in TGdataset; 2) there
are almost no partial matches among images. Thus, we
conclude that a simple implementation of content-level
VBWC is sufficient to achieve high hit rates.

Addressing incompatibility. As discussed above,
VBWC is incompatible with standard HTTP clients and
proxies. Fortunately, we have complete control over the
TrafficGuard system, particulary the cloud-client paired
proxies, which enabled us to implement VBWC. The
front-end child proxy takes care of encapsulating HTTP
requests from user apps and decapsulating responses
from the back-end cloud, meaning that VBWC is trans-
parent to user apps. In practice, the mobile app of Traf-
ficGuard maintains a 50-MB content cache on the clien-
t’s file system, along with an in-memory table mapping
content hashes to filenames that is a few KB large.

Ideally, every change to the cloud-side mapping table
triggers a change to the client-side mapping table accord-
ingly. But in practice, for various reasons (e.g., network
packet loss) this pair of tables may be different at some
time, so we need to synchronize them with proper over-
head. In TrafficGuard, the client-side mapping table is
loosely synchronized with the cloud-side mapping table
on an hourly basis, making the synchronization traffic
negligible and VBWC mostly effective.
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6 Evaluation
In this section, we evaluate the traffic reduction, system
overhead, and latency penalty brought by TrafficGuard.

6.1 Data Collection and Methodology
We evaluate the performance of TrafficGuard using both
real-system logs and trace-driven simulations. We col-
lect working logs from TrafficGuard’s back-end cloud
servers between Dec. 21–27, 2014, which include traces
of 350M HTTP requests issued from 0.6M users, as well
as records of CPU and memory utilization over time on
the cloud servers. We refer to this dataset as TGworklog.

On the other hand, as the client-side traffic optimiza-
tion mechanisms mainly help users reduce traffic by sup-
pressing unwanted requests, it is not possible to accurate-
ly record the corresponding saved traffic (which never
occurred in reality). Instead, we rely on trace-driven sim-
ulations using TGdataset to estimate the client-side and
overall traffic savings. In addition, we report real-world
traffic reduction results using TGworklog in Appendix B,
which mainly record the cloud-side traffic savings.

6.2 Traffic Reduction
Client-side. First, we examine the effectiveness of
TrafficGuard’s client-side mechanisms at reducing traf-
fic. In TGdataset, 11.4% of cellular traffic is transferred
at night, and according to TGconfig, 20% of users have
enabled overnight traffic filtering. Thus, we estimate that
users eliminate 2.3% (= 11.4%×20%) of cellular traffic
using the overnight traffic filter.

Moreover, we observe that 1% of users in TGdataset
regularly exceed the disconnection bound B2 = 20 MB
per day of background traffic. The resulting overage
traffic amounts to 5.33% of cellular traffic. In TGconfig,
97.6% of users have enabled background traffic filtering.
Therefore, we estimate that the background traffic fil-
ter reduces cellular traffic by 5.2% (= 5.33%× 97.6%).
Note that this background traffic saving is an under-
estimation, since we do not take the potential effect of
B1 (= 0.5 MB, the warning bound) into account.

Additionally, in TGdataset malicious content accounts
for 0.8% of HTTP traffic while ads account for 4%.
According to TGconfig, 67% of users have chosen to

drop ads. Consequently, after all malicious content and
unwanted ads are filtered, 3.48% (= 0.8%+4%×67%)
of HTTP traffic can be saved. This is equal to 2.8%
(= 3.48%×80.4%) of total cellular traffic.

Overall. Next, we evaluate how much traffic Traf-
ficGuard is able to reduce overall through trace-driven
simulations. Specifically, we play back all the requests
in TGdataset, and record how many bytes are saved
by each mechanism: traffic filtering, content validation,
image compression, and VBWC. As shown in Figure 9,
TrafficGuard is able to reduce HTTP traffic by 43% and
non-HTTP traffic by 7.4% when all four mechanisms are
combined. In summary, the overall cellular traffic usage
is reduced by 36%, from 1324 GB to 845 GB.

As expected, image compression is the most important
mechanism when used in isolation. 38% of the image
traffic is reduced by our implemented adaptive quality
reduction approach. In other words, our approach saves
a comparable portion (27%= 38%×71%) of HTTP traf-
fic as compared to Flywheel’s WebP-based transcoding
method, at a small fraction of the CPU cost (see § 6.3).

To understand how traffic savings are spread across
users, we plot the distribution of cellular traffic reduction
ratios for our users in Figure 10. We observe that 55%
of users saved over a quarter of cellular traffic, and 20%
users saved over a half (most of whom benefit a lot from
traffic filtering and VBWC). These results demonstrate
that most users received significant traffic savings.

Using TrafficGuard’s built-in user-feedback facility,
we asked users to report their cellular data caps. 95% of
the long-term volunteers in TGdataset reported their caps
to us. Using this information, we plot Figure 11, which
shows the percentage of each user’s data cap that would
be used with and without TrafficGuard (again, based
on trace-driven simulations). We observe that 58.2%
of users exceed their usage caps under normal circum-
stances, and that TrafficGuard grants significant practical
benefits for these users, e.g., users who would normally
be using 200%–300% of their allocation (and thus pay
overage fees) are able to stay below 100% usage with
TrafficGuard. Overall, TrafficGuard reduces the number
of users who exceed their data caps by 10.7 times.
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Table 5: Top-10 applications served by TrafficGuard,
ordered by popularity and by greatest traffic reduction.

By User Ratio (UR) By Traffic Saving Ratio (TSR)
App Name UR TSR App Name UR TSR

WeChat 74% 22% Android Browser 0.11% 84%
QQ 66% 22% Zhihu Q&A 0.15% 81%

Baidu Search 29% 21% iAround 0.03% 63%
Taobao 23% 42% No.1 Store 0.26% 61%

QQBrowser 22% 27% Baidu News 0.45% 57%
Sogou Pinyin 20% 12% Tiexue Military 0.01% 56%

Baidu Browser 16% 30% WoChaCha 0.34% 54%
Toutiao News 14% 22% Mogujie Store 0.91% 53%
Sohu News 10% 30% Koudai Store 0.26% 53%
QQ Zone 10% 33% Papa Photo 0.02% 52%

At last, we wonder how TrafficGuard’s traffic reduc-
tion gains are spread across user apps. Table 5 lists the
top-10 apps ordered by popularity (the fraction of users
with the app) as well as by the fraction of traffic elimi-
nated. We observe that TrafficGuard is able to eliminate
12%–42% of traffic for popular apps, but that the apps
with the greatest traffic savings (52%–84%) tend to be
unpopular. This indicates that the developers of popu-
lar apps may already be taking steps to optimize their
network traffic, while most unpopular apps can hardly
become mobile-friendly in the near future.

6.3 System Overhead
Cloud-side overhead. The major cost of operating
TrafficGuard lies in provisioning back-end cloud servers
and supplying them with bandwidth. TrafficGuard has
been able to support ∼0.2M users who send ∼90M re-
quests per day using only 23 commodity servers (HP Pro-
Liant DL380). The configuration of each server is: 2*4-
core Xeon CPU E5-2609 @2.50GHz, 4*8-GB memory,
and 6*300-GB 10K-RPM SAS disk (RAID-6).

Figure 12 illustrates the CPU/memory utilization of
cloud servers on a typical day. Mainly thanks to our
lightweight image compression strategy, the CPU uti-
lization stays below 40%. Further, to compare the com-
putation overhead of our image compression strategy
with Flywheel’s WebP-based transcoding (based on the
cwebp [5] encoder), we conduct offline experiments on
two identical server machines using 1M correct images
randomly picked from TGdataset as the workload. Im-

ages are compressed one by one without intermission.
The results in Figure 13 confirm that the computation
overhead (= average CPU utilization × total running
time) of TrafficGuard image compression is only a small
portion (10%–12%) of that of WebP-based transcoding.

Memory utilization is typically >90% since content is
in-memory cached whenever possible. Using a higher
memory capacity, say 1 TB per server, can accelerate the
back-end processing and thus decrease the corresponding
latency penalty. Nonetheless, as shown in Figure 16,
the back-end processing latency constitutes only a minor
portion of the total latency penalty, so we do not consider
extending the memory capacity in the short term.

Figure 14 reveals the inbound/outbound bandwidth for
back-end servers. Interestingly, we observe that a back-
end server uses more outbound bandwidth than inbound,
though inbound traffic has been optimized. This happens
because the back-end has a 38% cache hit rate (with 4 TB
of disk cache), so many objects are downloaded from the
Internet once but then downloaded by many clients.

Client-side overhead. The client-side overhead of
TrafficGuard comes from three sources: memory, com-
putation, and battery usage. The memory usage is mod-
est, requiring 40 MB for local blacklists, and 10–20 MB
for the VBWC mapping table. Similarly, while run-
ning on a typical (8-core ARM CPU @1.7GHz) Android
smartphone, TrafficGuard’s single-core CPU usage is
generally below 20% when the cellular modem is active,
and almost zero when the network is inactive.

To understand the impact of TrafficGuard on battery
life, we record the battery power consumption of it-
s mobile app when the child proxy is processing data
packets. As shown in Figure 15, its working-state bat-
tery power is 93 mW on average, given that the bat-
tery capacity of today’s smartphones lies between 5–20
Wh and their working-state battery power lies between
500 mW and a few watts [35, 45]. We also conduct
micro-benchmarks to examine specific facets of Traffic-
Guard’s battery consumption (see Appendix C for detail-
s). Micro-benchmark results illustrate that TrafficGuard
can effectively reduce the battery consumption of user
apps by optimizing their traffic.
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6.4 Latency Penalty
As TrafficGuard forwards HTTP GET requests to a back-
end proxy rather than directly to the source, it may add
response latency to clients’ requests. In addition, client-
side packet processing by the child proxy also brings
extra latency. To put the latency penalty into perspective,
first, we note three mitigating factors that effectively
reduce latency: 1) TrafficGuard filters out ∼10.3% of
requests locally, which eliminates all latency except for
client-side processing; 2) the ∼21.2% of traffic that is
not owing to HTTP GET requests is delivered over the
Internet normally, thus only incurring the latency penalty
for client-side processing; and 3) 38% of HTTP GET
requests hit the back-end Squid cache, thus eliminating
the time needed to fetch the content from the Internet.

Next, to understand TrafficGuard’s latency penalty in
the worst-case scenario (unfiltered HTTP GETs that do
not hit the Squid cache), we examine latency data from
TGworklog. Figure 16 plots the total latency of requests
that go through the TrafficGuard back-end and miss the
cache, as well as the individual latency costs of four
aspects of the system: 1) processing time on the client
side, 2) processing time in the back-end, 3) time for the
back-end to fetch the desired content, and 4) the RTT
from the client to the back-end. Figure 16 shows that
both client-side processing and back-end processing add
little delay to requests. Instead, the majority of delay
comes from fetching content, and the RTT from clients
to the back-end cloud. Interestingly, Figure 17 reveals
that the average processing time of an outbound packet is
longer than that of an inbound packet, although outbound
packets are usually smaller than inbound packets. This is
because the client-side filtering of malicious links and
ads is the major source of client-side latency penalty.

In the worst-case scenario, we see that TrafficGuard
does add significant latency to user requests. If we
conservatively assume that clients can fetch content with
the same latency distribution as Baidu’s servers, then
TrafficGuard adds 131 ms of latency in the median case
and 474 ms of latency in the average case. However, if
we take into account the three mitigating factors listed at
the beginning of this section (which all reduce latency),

the median latency penalty across all traffic is reduced to
merely 53 ms, and the average is reduced to 282 ms.

7 Conclusion
Traffic optimization is a common desire of today’s cel-
lular users, carriers, and service developers. Although
several existing systems can optimize the cellular traffic
for specific apps (typically web browsers), cross-app sys-
tems are much rarer, and have not been comprehensively
studied. In this paper, we share our design approach and
implementation experiences in building and maintaining
TrafficGuard, a real-world cross-app cellular traffic opti-
mization system used by 10 million users.

To design TrafficGuard, we took a measurement-
driven methodology to select optimization strategies that
are not only high-impact (i.e., they significantly reduce
traffic) but also efficient, easy to implement, and com-
patible with heterogenous apps. This methodology led to
some surprising findings, including the relative ineffec-
tiveness of text compression. Real-world performance
together with trace-driven experiments indicate that our
system meets its stated goal of reducing traffic (by 36%
on average), while also being efficient (23 commodi-
ty servers are able to handle the entire workload). In
the future, we plan to approach cellular carriers about
integrating TrafficGuard into their networks, since this
will substantially decrease latency penalties for users and
simplify the overall design of the system.
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A Performance Analysis of Cross-App RE
Techniques and VBWC

In this appendix, we discuss alternative caching strate-
gies to VBWC, and motivate our ultimate selection of
VBWC for TrafficGuard. A common approach to op-
timizing cross-app cellular traffic is called redundan-
cy elimination (RE) that removes repeated data transfer
[57, 31, 33, 32, 30, 46, 62, 49, 63, 64]. It can be deployed
in ISP middleboxes [14, 19, 20, 22], on Internet router-
s [31], or in an end-to-end manner (i.e., EndRE [30]).

RE relies on a pair of synchronized packet caches
deployed at each end of a network path [57]. At one
end, the sender (e.g., the parent proxy in TrafficGuard)
compresses data packets by replacing sequences of bytes
that have appeared in previous packets with fixed-size
pointers. At the other end, the receiver (e.g., the child
proxy in TrafficGuard) decodes data packets by follow-
ing the pointers and replacing compressed data with the
cached original data.
Informed Marking RE. Lumezanu et al. point out that
TCP/IP packet loss (also including the cases of packet
disorder and retransmission) can considerably degrade
the performance of RE in cellular networks, and thus
propose the enhanced Informed Marking RE algorith-
m [46]. To quantitatively understand the effect of In-
formed Marking RE, we conduct trace-driven simula-
tions based on TGdataset. The simulation results indi-
cate that merely 4.6% of HTTP traffic and 1.5% of non-
HTTP traffic can be saved.
EndRE vs. VBWC. EndRE (i.e., end-to-end RE)
usually runs above the transport layer, so it is immune
to TCP/IP packet loss. Following the design principle
in [30], we simulate EndRE on TGdataset, and observe
that as high as 10.2% of HTTP traffic can be saved —
even better than the savings of VBWC (9%).
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Figure 18: Real-world cellular traffic us-
age optimized by each mechanism.
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Figure 19: Distribution of real-world
traffic reduction ratios across users.

Unfortunately, EndRE incurs much higher complexi-
ty in terms of implementation, computation, and cache
maintenance. First, it is fairly straightforward to imple-
ment VBWC (refer to § 5.4), but implementing EndRE is
not simple. Second, a poorly-provisioned EndRE client
needs 60 MB of memory [30], which is even larger
than the total client-side memory overhead (< 60 MB)
of TrafficGuard. Even worse, the server-side memory
overhead of EndRE can be hundreds of times higher
than that of VBWC. Third, EndRE needs to maintain
simultaneous TCP connections to guarantee cache con-
sistency [30], while VBWC uses soft-state and is robust
to temporary cache inconsistency.
Collaborative Caching. By conducting a week-long
measurement of 3G traffic at a large cellular ISP in South
Korea, Woo et al. observe that simple TCP-level RE can
save 27%–42% of traffic with a collaborative cache of
512 GB [62]. However, such saving ratios can only be
acquired at a centralized vantage point in the cellular
backhaul networks, rather than an end point from a cel-
lular user’s perspective. In fact, the dataset collected by
Woo et al. does not contain the identifiers (e.g., IMEI or
IMSI) of user devices, thus making the per-user analysis
of traffic saving impossible.

B Real-world Traffic Reduction Results
As mentioned in § 6.1, the real-world working logs of
TrafficGuard (i.e., TGworklog) do not include the detailed
information of filtered traffic (since they never occurred
in reality). In other words, TGworklog mainly records
the known traffic reduction results on the cloud side,
through the traffic optimization mechanisms of content
validation, image compression, and VBWC.

Meanwhile, as we note in § 4.1, the mobile app of
TrafficGuard provides the user with an interface for dis-
playing various cellular usage statistics, particularly the
traffic saving statistics. Here the traffic saving statistics
are also extracted from the real-world working logs of

TrafficGuard, so they are less than the overall traffic
savings studied in § 6.2.

As shown in Figure 18, HTTP traffic is reduced by
33%, while non-HTTP traffic cannot be reduced since
non-HTTP traffic is not forwarded and processed by the
back-end servers of TrafficGuard. In total, 26% of cellu-
lar traffic is reduced according to TGworklog.

In detail, we plot the distribution of real-world cel-
lular/HTTP traffic reduction ratios across users in Fig-
ure 19. We observe that 38% of users saved over a
quarter of HTTP traffic, and 10% of users saved over a
half. In comparison, 29% of users saved over a quarter of
cellular traffic, and merely 2.5% users saved over a half.

C Micro-Benchmark Results of Traffic-
Guard’s Battery Consumption

To understand specific facets of TrafficGuard’s bat-
tery consumption, we conduct micro-benchmarks on the
client side with three popular, diverse user apps: the
stock Android Browser, WeChat (the most popular app
in China, similar to WhatsApp), and Youku (China’s
equivalent of YouTube). In each case, we drove the app
for five minutes with and without TrafficGuard enabled
while connected to a 4G network.

Figures 20, 21, and 22 show the battery usage in each
experiment. Meanwhile, Figures 23, 24, and 25 depict
the corresponding CPU usage; Figures 26, 27, and 28
plot the corresponding memory usage. All these results
reveal that in cases where TrafficGuard can effectively
reduce network traffic (e.g., while browsing the web), it
also saves battery life or has little impact on battery life,
because the user app needs to process less traffic; accord-
ingly, TrafficGuard does not increase CPU/memory us-
age on the whole. However, in cases where TrafficGuard
can hardly reduce any traffic (e.g., Youku video stream-
ing), it reduces battery life and increases CPU/memory
usage. Thus, we are planning to improve the design of
TrafficGuard, in order that it can recognize and bypass
the traffic from audio/video streams.
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Figure 20: Battery usage of An-
droid Browser with and without
TrafficGuard (abbreviated as TG).
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Figure 21: Battery usage of
WeChat with and without Traffic-
Guard.

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300

B
a
tt
e
ry

 U
s
a
g
e
 (

m
A

h
)

Time (second)

Youku (w/o TG)
Youku + TG

Figure 22: Battery usage of Y-
ouku with and without Traffic-
Guard.
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Figure 23: CPU usage of Android
Browser w/ and w/o TrafficGuard.

 0

 10

 20

 30

 40

 50

 60

 0  50  100  150  200  250  300

C
P

U
 U

s
a

g
e

 (
%

)

Time (second)

WeChat (w/o TG)
WeChat + TG

Figure 24: CPU usage of WeChat
with and without TrafficGuard.
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Figure 25: CPU usage of Youku
with and without TrafficGuard.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250  300

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Time (second)

Android Browser (w/o TG)
Android Browser + TG

Figure 26: Memory usage of An-
droid Browser with and without
TrafficGuard.
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Figure 27: Memory usage of
WeChat with and without Traffic-
Guard.
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Figure 28: Memory usage of Y-
ouku with and without Traffic-
Guard.
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